
7

Character Manipulation

While R is usually thought of as a language designed for numerical computa-
tion, it contains a full complement of functions which can manipulate charac-
ter data. Combined with R’s powerful vectorized operations, these functions
can perform the same sorts of tasks that scripting languages like perl and
python are often used for.

7.1 Basics of Character Data

Character values in R can be stored as scalars, vectors, or matrices, or they
can be columns of a data frame or elements of a list. When applied to objects
like this, the length function will report the number of character values in
the object, not the number of characters in each string. To find the number
of characters in a character value, the nchar function can be used. Like most
functions in R, nchar is vectorized. For example, the names of the fifty states
in the United States can be found in the vector state.name which is distrib-
uted as part of R. To find the lengths of the names of the states, nchar can
be used:

> nchar(state.name)
[1] 7 6 7 8 10 8 11 8 7 7 6 5 8 7 4
[16] 6 8 9 5 8 13 8 9 11 8 7 8 6 13 10
[31] 10 8 14 12 4 8 6 12 12 14 12 9 5 4 7
[46] 8 10 13 9 7

7.2 Displaying and Concatenating Character Strings

Like other objects in R, character values will be displayed when their name is
typed at the console or when they are passed to the print function. However,
it is often more convenient to print or display these objects directly without

88 7 Character Manipulation

the subscripts that the print function provides. The cat function will com-
bine character values and print them to the screen or a file directly. The cat
function coerces its arguments to character values, then concatenates and dis-
plays them. This makes the function ideal for printing messages and warnings
from inside of functions:

> x = 7
> y = 10
> cat(’x should be greater than y, but x=’,x,’and y=’,y,’\n’)
x should be greater than y, but x= 7 and y= 10

Note the use of a newline (\n) in the argument list to insure that a complete
line is displayed. cat will always print a newline when it encounters a new-
line character. When there are multiple strings passed to cat, or when the
argument to cat is a vector of character strings, the fill= argument can be
used to automatically insert newlines into the output string. If fill= is set
to TRUE, the value of the system width option will be used to determine the
linesize; if a numeric value is used, the output will be displayed using that
width, although cat will not insert newlines into individual elements of its
input:

> cat(’Long strings can’,’be displayed over’,
+ ’several lines using’,’the fill= argument’,
+ fill=40)
Long strings can be displayed over
several lines using the fill= argument

The cat function also accepts a file= argument to specify that its out-
put should be directed to a file. When the file= argument is used, the
append=TRUE argument can also be provided to have cat append its output
to an already existing file.

For more control over the way that character values are concatenated, the
paste function can be used. In its simplest usage, this function will accept an
unlimited number of scalars, and join them together, separating each scalar
with a space by default. To use a character string other than a space as a
separator, the sep= argument can be used. If any object passed to paste is
not of mode character, it is converted to character:

> paste(’one’,2,’three’,4,’five’)
[1] "one 2 three 4 five"

If a character vector is passed to paste, the collapse= argument can be used
to specify a character string to place between each element of the vector:

> paste(c(’one’,’two’,’three’,’four’),collapse=’ ’)
[1] "one two three four"

Note that the collapse= argument must be used in these cases, as sep= has
no effect when applied to a vector.

7.3 Working with Parts of Character Values 89

When multiple arguments are passed to paste, it will vectorize the opera-
tion, recycling shorter elements when necessary. This makes it easy to generate
variable names with a common prefix:

> paste(’X’,1:5,sep=’’)
[1] "X1" "X2" "X3" "X4" "X5"
> paste(c(’X’,’Y’),1:5,sep=’’)
[1] "X1" "Y2" "X3" "Y4" "X5"

In cases like this, the sep= argument controls what is placed between each
set of values that are combined, and the collapse= argument can be used to
specify a value to use when joining those individual values to create a single
string:

> paste(c(’X’,’Y’),1:5,sep=’_’,collapse=’|’)
[1] "X_1|Y_2|X_3|Y_4|X_5"

The same sort of operations can be applied to multiple arguments to paste:

> paste(c(’X’,’Y’),1:5,’^’,c(’a’,’b’),sep=’_’,collapse=’|’)
[1] "X_1_^_a|Y_2_^_b|X_3_^_a|Y_4_^_b|X_5_^_a"

By omitting the collapse argument, the individual pasted pieces are returned
separately instead of being joined into a single string:

> paste(c(’X’,’Y’),1:5,’^’,c(’a’,’b’),sep=’_’)
[1] "X_1_^_a" "Y_2_^_b" "X_3_^_a" "Y_4_^_b" "X_5_^_a"

7.3 Working with Parts of Character Values

Individual characters of character values are not accessible through ordinary
subscripting. Instead, the substring function can be used either to extract
parts of character strings, or to change the values of parts of character strings.
In addition to the string being operated on, substring accepts a first=
argument giving the first character of the desired substring, and a last=
argument giving the last character. If not specified, last= defaults to a large
number, so that specifying just a start= value will operate from that character
to the end of the string. Like most functions in R, substring is vectorized,
operating on multiple strings at once:

> substring(state.name,2,6)
[1] "labam" "laska" "rizon" "rkans" "alifo" "olora" "onnec"
[8] "elawa" "lorid" "eorgi" "awaii" "daho" "llino" "ndian"
[15] "owa" "ansas" "entuc" "ouisi" "aine" "aryla" "assac"
[22] "ichig" "innes" "issis" "issou" "ontan" "ebras" "evada"
[29] "ew Ha" "ew Je" "ew Me" "ew Yo" "orth " "orth " "hio"
[36] "klaho" "regon" "ennsy" "hode " "outh " "outh " "ennes"
[43] "exas" "tah" "ermon" "irgin" "ashin" "est V" "iscon"
[50] "yomin"

90 7 Character Manipulation

Notice that in the case of strings that have fewer characters than specified
in the last= argument (like Ohio or Texas in this example), substring re-
turns as many characters as it finds with no padding provided. (The sprintf
function can be used to pad a series of character values to a common size; see
Section 2.13.)

Vectorization takes place for the first= and last= arguments as well as
for character vectors passed to subscript. Although the strsplit function
described in Section 7.6 can perform the operation automatically, a vector of
character values can be created from a single string by substring as follows:

> mystring = ’dog cat duck’
> substring(mystring,c(1,5,9),c(3,7,12))
[1] "dog" "cat" "duck"

For finding locations of particular characters within a character string, the
string first needs to be converted to a character vector containing individual
characters. This can be done by passing a vector consisting of all the characters
to be processed as both the first= and last= arguments, and then applying
which to the result:

> state = ’Mississippi’
> ll = nchar(state)
> ltrs = substring(state,1:ll,1:ll)
> ltrs
[1] "M" "i" "s" "s" "i" "s" "s" "i" "p" "p" "i"
> which(ltrs == ’s’)
[1] 3 4 6 7

The assignment form of substring allows replacement of selected portions
of character strings, but substring will only replace parts of the string with
values that have the same number of characters; if a string that’s shorter
than the implied substring is provided, none of the original string will be
overwritten:

> mystring = ’dog cat duck’
> substring(mystring,5,7) = ’feline’
> mystring
[1] "dog fel duck"
> mystring = ’dog cat duck’
> substring(mystring,5,7) = ’a’
> mystring
[1] "dog aat duck"

7.4 Regular Expressions in R

Regular expressions are a method of expressing patterns in character values
which can then be used to extract parts of strings or to modify those strings

7.5 Basics of Regular Expressions 91

in some way. Regular expressions are supported in the R functions strsplit,
grep, sub, and gsub, as well as in the regexpr and gregexpr functions which
are the main tools for working with regular expressions in R.

Regular expression syntax varies depending on the particular implemen-
tation a program uses. R tries to provide a great deal of flexibility regard-
ing the regular expressions it understands. By default, R uses a basic set of
regular expressions similar to those used by UNIX utilities like grep. The
extended=TRUE argument to R functions that support regular expressions ex-
tend the set of regular expressions to include those supported by the POSIX
1003.2 standard. To use regular expressions like those supported by scripting
languages such as perl and python, the perl=TRUE argument can be used.
Thus, if you’re already familiar with a particular type of regular expressions,
you can probably find an option that will make R work the way you expect
it to.

The backslash character (\) is used in regular expressions to signal that cer-
tain characters with special meaning in regular expressions should be treated
as normal characters. In R, this means that two backslash characters need to
be entered into an input string anywhere that special characters need to be es-
caped. Although the double backslash will display when the string is printed,
nchar or cat can verify that only a single backslash is actually included in the
string. For example, in regular expressions, a period (.) is ordinarily matched
by any single character. To create a regular expression that would match file
names with an extension of “.txt”, we could use a regular expression like

> expr = ’.*\\.txt’
> nchar(expr)
[1] 7
> cat(expr,’\n’)
.*\.txt

Single backslashes, like those which are part of a newline character (\n), will
be interpreted correctly inside of regular expressions. One way to avoid the
need for quotes or double backslashes is to use the readline function to enter
your regular expressions into R. For example, we could use readline in the
previous example as follows:

> expr = readline()
.*\.txt
> nchar(expr)
[1] 7

7.5 Basics of Regular Expressions

Regular expressions are composed of three components: literal characters,
which are matched by a single character; character classes, which can be

92 7 Character Manipulation

matched by any of a number of characters, and modifiers, which operate on
literal characters or character classes. Since many punctuation marks are reg-
ular expression modifiers, the following characters must always be preceded
by a backslash to retain their literal meaning:

. ^ $ + ? * () [] { } | \

To form a character class, use square brackets ([]) surrounding the charac-
ters that you would like to match. For example, to create a character class that
will be matched by either a, b, or 3, use [ab3]. Dashes can be used inside
of character classes to represent a range of values such as [a-z] or [5-9].
Because of this, if a dash is to be literally included in a character class, it
should either be the first character in the class or it should be preceded by
a backslash. Other special characters (except square brackets) do not need a
backslash when used in a character class.

Using characters and character classes as basic building blocks, we can now
construct regular expressions by understanding the modifiers that are part of
the regular expression language. These operators are listed in Table 7.1.

Modifier Meaning

^ anchors expression to beginning of target
$ anchors expression to end of target
. matches any single character except newline
| separates alternative patterns
() groups patterns together
* matches 0 or more occurrences of preceding entity
? matches 0 or 1 occurrences of preceding entity
+ matches 1 or more occurrences of preceding entity

{n} matches exactly n occurrences of preceding entity
{n,} matches at least n occurrences of preceding entity
{n,m} matches between n and m occurrences

Table 7.1. Modifiers for regular expressions

The modifiers operate on whatever entity they follow, using parentheses
for grouping if necessary. As some simple examples, a string with two digits
followed by one or more letters could be matched by the regular expression
“[0-9][0-9][a-zA-Z]+”; three consecutive occurrences of the string “abc”
could be matched by “(abc){3}”; a filename consisting of all letters, and
ending in “.jpg” could be matched by “^[a-zA-Z]+\\.jpg$”. (In the pre-
vious example, the double backslashes would be required if you entered the
regular expression as a quoted string in R; if you used readline to enter the
expression, you would use just a single backslash.)

Remember that regular expressions are simply character strings in R, so
they can be manipulated like any other character strings. For example, the

7.6 Breaking Apart Character Values 93

vertical bar (|) is used in regular expressions to express alternation. To create
a regular expression that would be matched by several different strings, we
can combine the strings using the bar as a separator:

> strs = c(’chicken’,’dog’,’cat’)
> expr = paste(strs,collapse=’|’)
> expr
[1] "chicken|dog|cat"

The variable expr could now be used as a regular expression to match any of
the words in the original vector.

7.6 Breaking Apart Character Values

The strsplit function can use a character string or regular expression to di-
vide up a character string into smaller pieces. The first argument to strsplit
is the character string to break up, and the second argument is the character
value or regular expression which should be used to break up the string into
parts.

Like other functions that can return different numbers of elements from
their inputs, strsplit returns its results as a list, even when its input is a
single character string. For example, suppose we want to break up a simple
sentence into individual words, by splitting the string wherever a blank occurs:

> sentence =
+ ’R is a free software environment for statistical computing’
> parts = strsplit(sentence,’ ’)
> parts
[[1]]
[1] "R" "is" "a" "free"
[5] "software" "environment" "for" "statistical"
[9] "computing"

To access the results, the first element of the list must be used:

> length(parts)
[1] 1
> length(parts[[1]])
[1] 9

When the input to strsplit is a vector of character strings, sapply can be
used to process the output to return results for each of the strings:

> more = c(’R is a free software environment for statistical
+ computing’, ’It compiles and runs on a wide

variety of UNIX platforms’)
> result = strsplit(more,’ ’)
> sapply(result,length)
[1] 9 11

94 7 Character Manipulation

Alternatively, if the structure of the output is not important, all of the split
parts can be combined using unlist:

> allparts = unlist(result)
> allparts
[1] "R" "is" "a" "free"
[5] "software" "environment" "for" "statistical"
[9] "computing" "It" "compiles" "and"
[13] "runs" "on" "a" "wide"
[17] "variety" "of" "UNIX" "platforms"

Because strsplit can accept regular expressions to decide where to split
a character string, a wide variety of situations can be easily handled. For
example, if there are multiple spaces in a string, and a space is used as the
splitting character, extra empty strings may be returned:

> str = ’one two three four’
> strsplit(str,’ ’)
[[1]]
[1] "one" "" "two" "" "" "three" "four"

By using a regular expression representing one or more blanks (using the +
modifier), we can extract only nonempty strings:

> strsplit(str,’ +’)
[[1]]
[1] "one" "two" "three" "four"

Using an empty string as the splitting character, strsplit can return a
list of individual characters from a vector of character strings:

> words = c(’one two’,’three four’)
> strsplit(words,’’)
[[1]]
[1] "o" "n" "e" " " "t" "w" "o"

[[2]]
[1] "t" "h" "r" "e" "e" " " "f" "o" "u" "r"

7.7 Using Regular Expressions in R

The grep function accepts a regular expression and a character string or vector
of character strings, and returns the indices of those elements of the strings
which are matched by the regular expression. If the value=TRUE argument is
passed to grep, it will return the actual strings which matched the expression
instead of the indices.

If the string to be matched should be interpreted literally (i.e., not as a
regular expression), the fixed=TRUE argument should be used.

7.7 Using Regular Expressions in R 95

One important use of grep is to extract a set of variables from a data
frame based on their names. For example, the LifeCycleSavings data frame
contains two variables with information about the percentage of population
less than 15 years old (pop15) or greater than 75 years old (pop75). Since
both of these variables begin with the string “pop”, we can find their indices
or values using grep:

> grep(’^pop’,names(LifeCycleSavings))
[1] 2 3
> grep(’^pop’,names(LifeCycleSavings),value=TRUE)
[1] "pop15" "pop75"

To create a data frame with just these variables, we can use the output of
grep as a subscript:

> head(LifeCycleSavings[,grep(’^pop’,names(LifeCycleSavings))])
pop15 pop75

Australia 29.35 2.87
Austria 23.32 4.41
Belgium 23.80 4.43
Bolivia 41.89 1.67
Brazil 42.19 0.83
Canada 31.72 2.85

To find regular expressions without regard to the case (upper or lower)
of the input, the ignore.case=TRUE argument can be used. To search for
the string “dog” appearing as a word and ignoring case, we could use the
following:

> inp = c(’run dog run’,’work doggedly’,’CAT AND DOG’)
> grep(’\\<dog\\>’,inp,ignore.case=TRUE)
[1] 1 3

Surrounding a string with escaped angle brackets (\\< and \\>) restricts
matches to the case where the string is surrounded by either white space,
punctuation, or a line ending or beginning.

If the regular expression passed to grep is not matched in any of its inputs,
grep returns an empty numeric vector. Thus, the any function can be used
to test if a regular expression occurs anywhere in a vector of strings:

> str1 = c(’The R Foundation’,’is a not for profit
+ organization’,’working in the public interest’)
> str2 = c(’ It was founded by the members’,
+ ’of the R Core Team in order’,
+ ’to provide support for the R project’)
> any(grep(’profit’,str1))
[1] TRUE
> any(grep(’profit’,str2))
[1] FALSE

96 7 Character Manipulation

While the grep function can be used to test for the presence of a regular
expression, sometimes more details regarding the matches that are found are
needed. In R, the regexpr and gregexpr functions can be used to pinpoint
and possibly extract those parts of a string that were matched by a regular
expression. The output from these functions is a vector of starting positions
of the regular expressions which were found; if no match occurred, a value of
-1 is returned. In addition, an attribute called match.length is associated
with the vector of starting positions to provide information about exactly
which characters were involved in the match. The regexpr function will only
provide information about the first match in its input string(s), while the
gregexpr function returns information about all matches found. The input
arguments to regexpr and gregexpr are similar to those of grep; however,
the ignore.case=TRUE argument is not available in versions of R earlier than
version 2.6.

Since regexpr only reports the first match it finds, it will always return
a vector, with -1 in those positions where no match was found. To extract
the strings that actually matched, substr can be used, after calculating the
ending position from the regexpr output and the match.length attribute:

> tst = c(’one x7 two b1’,’three c5 four b9’,
+ ’five six seven’,’a8 eight nine’)
> wh = regexpr(’[a-z][0-9]’,tst)
> wh
[1] 5 7 -1 1
attr(,"match.length")
[1] 2 2 -1 2
> res = substring(tst,wh,wh + attr(wh,’match.length’) - 1)
> res
[1] "x7" "c5" "" "a8"

In the case of the third string, which did not contain the regular expression,
an empty string is returned, preserving the structure of the output relative to
the input. If empty strings are not desired, they can be easily removed:

> res[res != ’’]
[1] "x7" "c5" "a8"

The output from gregexpr is similar to that of regexpr, but, like
strsplit, gregexpr always returns its result in the form of a list. Continuing
the previous example, but looking for all matches, we can call gregexpr as
follows:

> wh1 = gregexpr(’[a-z][0-9]’,tst)
> wh1
[[1]]
[1] 5 12
attr(,"match.length")
[1] 2 2

7.7 Using Regular Expressions in R 97

[[2]]
[1] 7 15
attr(,"match.length")
[1] 2 2

[[3]]
[1] -1
attr(,"match.length")
[1] -1

[[4]]
[1] 1
attr(,"match.length")
[1] 2

To further process the results from gregexpr, we need to call the substring
function for each element of the output list. One way to do it is with a loop:

> res1 = list()
> for(i in 1:length(wh1))
+ res1[[i]] = substring(tst[i],wh1[[i]],
+ wh1[[i]] +
+ attr(wh1[[i]],’match.length’) -1)
> res1
[[1]]
[1] "x7" "b1"

[[2]]
[1] "c5" "b9"

[[3]]
[1] ""

[[4]]
[1] "a8"

Another possibility for processing the output is to use mapply. The first
argument to mapply is a function that accepts multiple arguments; the re-
maining arguments are vectors of equal lengths (like the text input and the
output from gregexpr), whose elements will be passed to that function one at
a time. The same technique used in the previous example can be encapsulated
into a function as follows:

> getexpr = function(str,greg)substring(str,greg,
+ greg + attr(greg,’match.length’) - 1)

Now mapply can be called with the two vectors of interest:

98 7 Character Manipulation

> res2 = mapply(getexpr,tst,wh1)
> res2
$"one x7 two b1"
[1] "x7" "b1"

$"three c5 four b9"
[1] "c5" "b9"

$"five six seven"
[1] ""

$"a8 eight nine"
[1] "a8"

One advantage of this approach is that it automatically creates an appropriate
object to hold the output; in addition, mapply uses the input strings as names
in the output, which may or may not be desirable.

7.8 Substitutions and Tagging

For substituting text based on regular expressions, R provides two functions:
sub and gsub. Each of these functions accepts a regular expression, a string
containing what will be substituted for the regular expression, and the string
or strings to operate on. The sub function changes only the first occurrence
of the regular expression, while the gsub function performs the substitution
on all occurrences within the string.

One important use of these functions concerns numeric data which is read
from text sources like web pages or financial reports, and which may contain
commas or dollar signs. For example, suppose we’ve input a vector of values
from a financial report as follows:

> values = c(’$11,317.35’,’$11,234.51’,’$11,275.89’,
+ ’$11,278.93’,’$11,294.94’)

To use these values as numbers, the commas and dollar signs need to be
removed before as.numeric can be used. A regular expression to find either
commas or dollar signs can be composed using a character class, and this can
be passed to gsub with an empty substitution pattern, providing values which
can be converted to numbers:

> as.numeric(gsub(’[$,]’,’’,values))
[1] 11317.35 11234.51 11275.89 11278.93 11294.94

When using this technique, avoid using as.numeric on anything less than an
entire vector of values, since the mode of an individual element of a matrix or
a single value in a data frame cannot be changed.

7.8 Substitutions and Tagging 99

When using the substitution functions, a powerful feature known as tag-
ging of regular expressions is available. When part of a regular expression is
surrounded by (unescaped) parentheses, that part can be used in a substitu-
tion pattern by representing it as a backslash followed by a number. The first
tagged pattern is represented by \\1, the second by \\2, and so on. A com-
mon practice in financial reports is to surround values that represent negative
numbers with parentheses; these parentheses will prevent R from properly
interpreting such values as numbers. We can tag the number inside the paren-
theses using a regular expression, and substitute the value by preceding it with
a minus sign. Note the difference between the literal parentheses (preceded by
two backslashes) and the parentheses used for tagging:

> values = c(’75.99’,’(20.30)’,’55.20’)
> as.numeric(gsub(’\\(([0-9.]+)\\)’,’-\\1’,values))
[1] 75.99 -20.30 55.20

To extract just the tagged pattern from a regular expression, one possi-
bility is to use the regular expression beginning and end anchor characters
(^ and $, respectively) to account for all the nontagged characters in the
string, and specify just the tagged expression for the substitution string. For
example, suppose we are trying to extract a value preceded by the string
value= from a longer string. Simply substituting the regular expression for
the tagged part will retain all the other parts of the string:

> str = ’report: 17 value=12 time=2:00’
> sub(’value=([^]+)’,’\\1’,str)
[1] "report: 17 12 time=2:00"

(The regular expression [^]+ is interpreted as one or more occurrences of a
character that is not a blank.) By expanding the regular expression to include
all the unwanted parts, the substitution will extract just what we want:

> sub(’^.*value=([^]+).*$’,’\\1’,str)
[1] "12"

Another strategy is to use regexpr or gregexpr to find the location of the
match, and apply sub or gsub to the extracted parts:

> str = ’report: 17 value=12 time=2:00’
> greg = gregexpr(’value=[^]+’,str)[[1]]
> sub(’value=([^]+)’,’\\1’,
+ substring(str,greg,greg

+ attr(greg, ’match.length’) - 1))
[1] "12"

